Chemotactic sorting to cAMP in the multicellular stages of Dictyostelium development.

نویسندگان

  • D Traynor
  • R H Kessin
  • J G Williams
چکیده

Dictyostelium transformants that overproduce the extracellular form of cyclic nucleotide phosphodiesterase and so accumulate a reduced amount of cAMP are blocked in development after aggregation in the form of a tight mound, prior to formation of the apical tip. In such mounds, prespore cell differentiation is repressed, and the apical accumulation of prestalk cells is greatly retarded. When a source of cAMP is placed below the arrested mounds, prestalk cells that would normally migrate in an apical direction instead sort downwards to the substratum. Thus, by acting as the chemoattractant that draws prestalk cells to the apex, cAMP signaling directs the formation of a patterned structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulate Dictyostelium Differentiation

■ Abstract In Dictyostelium amoebae, cell-type differentiation, spatial patterning, and morphogenesis are controlled by a combination of cell-autonomous mechanisms and intercellular signaling. A chemotactic aggregation of ∼105 cells leads to the formation of a multicellular organism. Cell-type differentiation and cell sorting result in a small number of defined cell types organized along an ant...

متن کامل

Visualizing PI3 Kinase-Mediated Cell-Cell Signaling during Dictyostelium Development

BACKGROUND Starving amoebae of Dictyostelium discoideum communicate by relaying extracellular cAMP signals, which direct chemotactic movement, resulting in the aggregation of thousands of cells into multicellular aggregates. Both cAMP relay and chemotaxis require the activation of PI3 kinase signaling. The spatiotemporal dynamics of PI3 kinase signaling can be followed in individual cells via t...

متن کامل

The control of chemotactic cell movement during Dictyostelium morphogenesis.

Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual ...

متن کامل

Spiral and concentric waves organize multicellular Dictyostelium mounds

BACKGROUND It has been known for more than 20 years that the early aggregation of the slime mould Dictyostelium is driven by periodic waves of cAMP, which instruct the cells to collect at the aggregation centre. Although it has been hypothesized that cAMP waves are also involved in the organization of multicellular morphogenesis, wave propagation in the later stages of Dictyostelium development...

متن کامل

Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response.

Dictyostelium discoideum grow unicellularly, but develop as multicellular organisms. At two stages of development, their underlying symmetrical pattern of cellular organization becomes disrupted. During the formation of the multicellular aggregate, individual non-polarized cells re-organize their cytoskeletal structures to sequester specific intracellular signaling elements for activation by an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 17  شماره 

صفحات  -

تاریخ انتشار 1992